Access Control and Authentication

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

Access Control Model for Virtual Objects (Shadows)
Communication for AWS Internet of Things

Asma Alshehri, James Benson, Farhan Patwa and Ravi Sandhu
Institute for Cyber Security (ICS),
Center for Security and Privacy Enhanced Cloud Computing (C-SPECC), and
Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas, US
{nmt366,james.benson,farhan.patwa,ravi.sandhu}@utsa.edu

ABSTRACT

The concept of Internet of Things (IoT) has received considerable
attention and development in recent years. There have been signif-
icant studies on access control models for IoT in academia, while
companies have already deployed several cloud-enabled IoT plat-
forms. However, there is no consensus on a formal access control
model for cloud-enabled IoT. The access-control oriented (ACO) ar-
chitecture was recently proposed for cloud-enabled IoT, with virtual
objects (VOs) and cloud services in the middle layers. Building upon
ACO, operational and administrative access control models have
been published for virtual object communication in cloud-enabled
IoT illustrated by a use case of sensing speeding cars as a running
example.

In this paper, we study AWS IoT as a major commercial cloud-
IoT platform and investigate its suitability for implementing the
afore-mentioned academic models of ACO and VO communication
control. While AWS IoT has a notion of digital shadows closely
analogous to VOs, it lacks explicit capability for VO communica-
tion and thereby for VO communication control. Thus there is a
significant mismatch between AWS IoT and these academic mod-
els. The principal contribution of this paper is to reconcile this
mismatch by showing how to use the mechanisms of AWS IoT
to effectively implement VO communication models. To this end,
we develop an access control model for virtual objects (shadows)
communication in AWS IoT called AWS-IoT-ACMVO. We develop
a proof-of-concept implementation of the speeding cars use case in
AWS IoT under guidance of this model, and provide selected perfor-
mance measurements. We conclude with a discussion of possible
alternate implementations of this use case in AWS IoT.

KEYWORDS

Security; Access Control; Internet of Things (IoT); AWS IoT; IoT
Architecture; Devices; Virtual Objects; ACL; RBAC; ABAC;

ACM Reference Format:

Asma Alshehri, James Benson, Farhan Patwa and Ravi Sandhu. 2018. Access
Control Model for Virtual Objects (Shadows) Communication for AWS
Internet of Things. In CODASPY ’18: Eighth ACM Conference on Data and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY ’18, March 19-21, 2018, Tempe, AZ, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5632-9/18/03...$15.00
https://doi.org/10.1145/3176258.3176328

175

Application Security and Privacy, March 19-21, 2018, Tempe, AZ, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3176258.3176328

1 INTRODUCTION

The Internet of Things (IoT) raises new security challenges, which
require significant revisions and enhancements of existing security
solutions, including access control systems. Recently an access-
control oriented architecture (ACO) [2] for cloud-enabled IoT has
been developed, which includes four layers: an object layer, a virtual
object (VO) layer, a cloud services layer, and an application layer
(see Section 2.1). The ACO recognizes the need for communication
control within each layer and across adjacent layers, as well as the
need for data access control at the cloud services and application
layers. Multiple and diverse access control models are required at
various points in this architecture, which must collectively enforce
over-arching access control policies reflecting the complexity of
cloud-enabled IoT. Towards this end, a set of access control mod-
els for VO communications has been published [3], referred to
as ACO-IoT-ACMsVO. These models are developed in two layers:
operational models and administrative models. Also, the style of
communication among VO is based upon publish/subscribe topic-
based communication interaction scheme. The ACO-IoT-ACMsVO
models are illustrated by a use case of sensing speeding cars as a
running example [3] which we will utilize in this paper (see Sec-
tion 2.2).

The principal goal of this paper is to reconcile the afore-mentioned
academic models with a major commercial cloud-IoT platform, viz.,
AWS ToT. While AWS IoT has a notion of digital shadows closely
analogous to VOs, it lacks explicit capability for VO communica-
tion and thereby for VO communication control. Thus, there is a
significant mismatch between AWS IoT and these academic mod-
els. Nevertheless, as we will show, it is possible to use AWS IoT
mechanisms to effectively realize and control VO communications.
This demonstrates on one hand that academic models developed
independent of AWS IoT can be enforced using this commercially
significant platform. It also suggests enhancements to AWS IoT that
would be beneficial to facilitate such enforcement. We believe that
in the rapidly developing ecosystems of cloud, IoT and their inter-
section, it is crucial to place academic work within major industry
developments. This is the primary motivation for this research.

The rest of the paper is organized as follows. First, we review the
ACO architecture for cloud-enabled IoT, the published ACO-IoT-
ACMsVO [3] access control models for VO communication within
ACO, and the general access control model for AWS IoT called AWS-
I0TAC [5] in Section 2. Then, within AWS IoT, we develop an access
control model for virtual object communication (AWS-IoT-ACMVO)

https://doi.org/10.1145/3176258.3176328
https://doi.org/10.1145/3176258.3176328

Access Control and Authentication

User and Administrator Interaction

!

Application Layer

]

Cloud Services Layer

Virtual Object Layer

Object Layer

!

User Direct Interaction

A
VIVIV

Figure 1: ACO Architecture for Cloud-Enabled IoT

in Section 3. Section 4 discusses the use case of ACO-IoT-ACMsVO
within the AWS-IoT-ACMVO model. Section 5 discusses proof-of-
concept implementations of the use case in two scenarios in AWS
IoT platform. Selected performance aspects of our implementation
are described in Section 6. A discussion of some issues of AWS
IoT and possible enhancements are explained in Section 7. Finally,
Section 8 concludes the paper.

2 BACKGROUND

2.1 ACO Architecture

The Access Control Oriented (ACO) Architecture for IoT was pro-
posed in [2], consistent with various published IoT architectures
[1, 6,7, 9-14]. ACO architecture comprises four layers: an object
layer, a virtual object layer, a cloud services layer, and an application
layer, as shown in Figure 1. We briefly discuss each layer below.

The object layer comprises heterogeneous physical objects such
as sensors, actuators, cameras, cellphones, etc. Users can directly
communicate with objects by pressing a button, changing a device,
powering on an object, etc. Also, objects can communicate directly
to each other through communication technologies, or indirectly
through virtual objects.

A virtual object represents the persistent current status of a
physical object, when the two are connected. Otherwise, a virtual
object could represent the last received state, desired future state,
or both. A virtual object can have a subset of a physical object’s
services, all of a physical object’s services, or a subset of a physi-
cal object’s services. Virtual objects can uniformly communicate
with each other regardless of heterogeneity and locality in the ob-
ject layer. Virtual to physical object association can be one-to-one,
many-to-one, one-to-many, or many-to-one [2].

The cloud services layer assists in storing and processing the
collected data. This data can be used intelligently for smart moni-
toring and actuation, and it can be visualized in ways that are more
meaningful for users. Thus, policymakers (or administrators) can
utilize the visualized data to help them to modify or add policies
that are kept in the cloud, so the communication and access be-
tween applications and objects are managed through the cloud. In

176

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

o
‘ A Deliver
T V. Subscribe
Virtual
Object

Layer Topicl
A

Object

Layer Devices

Figure 2: The Publish/Subscribe Topic-Based Scheme in the
ACO-IoT-ACMsVO

addition, multiple IoT clouds can also communicate with each other,
ranging from only providing services and information at a local
level to collaborating with other connected IoTs in order to share
information at a broad level and pursue common goals.

The application layer is the topmost layer of the proposed ACO
IoT architecture and offers an interface through which users can
easily communicate with objects and visualize the analyzed informa-
tion. Administrators can also interact with applications to generate
policies or to update/add policies based on the obtained information.
Moreover, configuring and managing the communication of objects
and virtual objects is organized by administrators through applica-
tions. General users and administrators can remotely communicate
with IoT objects and virtual objects only through applications.

2.2 Access Control Models for VO
Communication in Cloud-Enabled IoT

The ACO architecture emphasizes the need for communication
control and data access control within and across ACO layers [2].
One of the communication points that needs to be controlled is
virtual object communication. Alshehri and Sandhu used the ACO
architecture for IoT to propose access control models for virtual ob-
ject communication (ACO-IoT-ACMsVO) [3]. The developed access
control models are in two layers: operational models and adminis-
trative models. The current dominant access control models, viz.,
access control lists (ACLs), capability lists, and role-based access
control (RBAC), are formally defined in both operational and ad-
ministrative models for VO communication. Also, attribute-based
access control (ABAC) models are proposed, because ABAC encom-
passes the benefits of previous traditional models, as well as brings
new features appropriate for dynamic and open environments such
as IoT.

The ACO-IoT-ACMsVO models are developed utilizing pub-
lish/subscribe communication interaction scheme. This scheme
is appropriate for large-scale distributed interactions such as the
IoT. The basic implementation style of publish/subscribe paradigm
is topic-based scheme. The topic-based scheme is comparable to
the idea of groups, where producers (publishers) publish data to a
topic and consumers (subscribers) become members of a topic (a
group) [4, 8]. Figure 2 shows the general idea of publish/subscribe
topic-based scheme that is used in ACO-IoT-ACMsVO.

Access Control and Authentication

Virtual & Tl S T m Tl
Object &Z 1 Y &% 1 ... PR/ B
layer
— —
Object . . .
layer ~ - \J a
< - <&

Figure 3: The Sensing Speeding Cars Use Case within ACO
Architecture [3]

The operational AC models specified in [3] focus in placing the
control on both VO side and topic (T) side to authorize VO to VO
communications via topics. In other words, the operational AC
models address the following questions. Which VOs are allowed
to publish or send a subscription request to a topic? Which VOs
should a topic forward data to? Which topic should VOs publish to
or send a subscription request to? Which topics should VOs receive
data from? This dual scheme permits unauthorized actions to be
denied at the earliest possible moment, rather than postponing the
decisions until later. Therefore, the decision of the VO communica-
tion in Figure 2 will be upon both of VO and T access control list
and capability list (ACL-Cap Operational Model) or upon both of
VO and T attributes (ABAC Operational Model).

A use case of sensing speeding cars is employed in [3] as a run-
ning example. Figure 3 shows a simplified picture of the employed
use case. One car is recognized to be speeding if two sensors within
a specified distance sense the speed to be over limit, and a camera
will report pictures of the over-limit cars. Physical sensors and the
camera identify cars by attached RFIDs and push collected data (e.g.
RFID and Speed) to their virtual objects where more powerful com-
putations and communication could happen. The use case assumes
that sensors can only communicate within the virtual object layer,
and they cannot communication directly with each other.

2.3 The General Access Control Model for
AWS-IoT (AWS-I0TAC)

Bhatt et al [5] study AWS IoT as a major commercial cloud-IoT
platform, and develop a formal access control model for AWS-IoT
called AWS-IoTAC. This access control model is an extension of
AWS access control (AWSAC) model previously developed by Zhang
et al [15] for AWS access control in general.

AWS-I0TAC comprises all the components and relations of AWSAC
with modified or extra set of components and relations related to
the AWS IoT service. The main component of AWSAC are Accounts
(A), Users (U), Groups (G), Roles (R), Services (S), Object Types (OT),
and Operations (OP). The additional components in AWS-IoTAC,
which are related to AWS IoT service, are Certs (C), IoT Objects (I0),
IoT Operations (IOP), Rules (Ru), Virtual Permission Assignment
(VPA), and Devices (D). The functionality of these entities and their
relationship to each other is formally described in [5].

177

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

Cloud

X AWS
Service Services
Layer 7}

/
AWS loT
. 1AM
Policy Role
Virtual Virtual I
Object Objects v
Layer ? \ 4
Ay [Rules Policy
Certificates A
v\ Rules Engine
Object -
Layer Devices

Figure 4: The Components of AWS-IoT- ACMVO

3 THE AWS-IOT-ACMVO MODEL FOR AWS
I0T SHADOWS COMMUNICATION

In this section, based on our extensive exploration of AWS IoT
platform, its documentation, and our implemented use cases, we
propose an access control model for virtual objects (shadows) com-
munication called AWS-IocT-ACMVO as an abstracted view of AWS
IoT capabilities. Figure 4 shows the major components of this model,
viz., certificates, AWS IoT policies, virtual objects (device shadows),
Message Queuing Telemetry Transport (MQTT) topics, and rules
engine and its action. The details of their functionalities are dis-
cussed below.

AWS IoT uses X.509 certificates as an identity credential for
devices authentication [5]. Certificates can be either an AWS IoT
generated certificate or a certificate signed by a AWS IoT registered
external certification authority. Generally, one certificate can be
given to many devices, but it is recommended that each device
has a unique certificate to enable fine-grained device management.
Figure 4 shows that each certificate can be given to more than one
device, and each device can have multiple certificates (the arrow
with double end means a multiplicity). However, every time a device
connects it can only activate one certificate.

Once a certificate is generated, there are two AWS IoT entities
that need to be attached to the certificate in order to authenticate
and authorize AWS IoT devices, which desire to communicate with
virtual objects (device shadows), viz., AWS IoT policy and virtual
objects. An AWS IoT policy is a JSON document that is attached to
a certificate for authorization purpose. It comprises one or more pol-
icy statements, each of which specifies effect, action, resources, and
optional condition. An action is an operation that can be granted
or denied to a resource as determined by the effect value. Actions
can be MQTT policy actions or thing shadow policy actions. The
MOQTT policy actions are the operations that deal with connect-
ing, sending, or receiving data, which are iot:Connect, iot:Publish,
iot:Subscribe, and iot:Receive. On the other hand, thing shadow pol-
icy actions deal with permissions to handle virtual objects (device
shadows), which are iot:DeleteThingShadow, iot:GetThingShadow,

Access Control and Authentication

and iot:UpdateThingShadow. Figure 4 shows that each AWS IoT
policy can be attached to more than one certificate, and each certifi-
cate can attach multiple AWS IoT policies. Generally, the AWS IoT
policy is attached to a certificate to authorize any kind of actions
(e.g. iot:Publish and iot:GetThingShadow) to devices that hold that
certificate (and its private key).

Virtual objects (device shadows) also need to be attached to a
certificate as a resource that a device is fully or partially authorized
to access. A virtual object can be given more than one certificate, and
a certificate can attach to more than one device. Figure 4 shows the
many-to-many relationship between certificates and virtual objects.
A virtual object is also a JSON document that stores information
about the current state of a connected device and the desired future
state of the connected device (there is no recent or historical state).
One of the benefits of the device shadow is that its information
can be used to set or get the state of its device, even if the device
is not connected. In general, a device that holds a certificate with
attached policies and virtual objects has the rights to communicate
and access to the attached virtual objects (one virtual object at each
connection) based on the attached policies.

In AWS IoT, applications cannot directly update or retrieve data
of devices. Virtual objects in AWS work as an intermediate point of
communication among applications and physical devices. The only
way for applications or devices to interact with a virtual object is to
communicate with its MQTT topics. In other words, MQTT topics
of a virtual object allow applications and devices to get, update, or
delete the state information of the virtual object (device shadow)
by publishing or subscribing to its MQTT topics. The name of
each MQTT topic begin with $aws/things/thingName/shadow/#,
where the thingName is the name of a virtual object, and the symbol
could be one of the thingName MQTT topics that can be used to
interact with the thingName. There are reserved thingName MQTT
topics for each virtual object that can be used to publish or subscribe
to the virtual object. In order to send a request to a thingName (a
virtual object), we only can use /update, /get, or /delete as thing-
Name MQTT topics of that thingName. While /update/accepted,
/update/reject, /update/delta, /update/documents, /get/accepted,
/get/rejected, /delete/accepted, and /delete/rejected MQTT topics
are used by the thingName itself to publish an acknowledgement
about accepting or rejecting the received request. Generally, AWS
IoT service generates reserved MQTT topics for each created virtual
object. The reserved MQTT topics is the only way to communicate
with the created virtual object. Figure 4 shows that each virtual
object has specific reserved MQTT topics, and each reserved MQTT
topic is only related to one virtual object. Moreover, each device
can communicate with more than one MQTT topic as long as it
has an authorized certificate, and each MQTT topic can be used by
more than one device if devices are authorized.

A powerful mechanism in AWS IoT is that a message sent to
an MQTT topic can be recognized and analyzed by a rule. Rules
provide processing for the arrived messages to MQTT topics and
enable interactions with various AWS services. A rule consists of a
rule name, optional description, SQL statement, SQL version, and
one or more actions. The SQL statement is used to filter received
messages to MQTT topics, and then the rule engine forwards it to
AWS services or republishes it to other MQTT topics by using the
action field specified in the rule. There are fixed AWS actions that

178

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

B IAM
Polic
4 Role
Virtual
Object
Rules Engine
Vo1
Jopics,
A
Object Devi
Layer evices

Figure 5: The Rules Engine as a Communication Channel in
AWS-IoT-ACMVO

can be selected, such as inserting a message into a DynamoDB table,
invoking a Lambda function, and republishing messages to AWS IoT
topics. Thus, rules that are attached to MQTT topics provide ways
for virtual objects to interact with AWS services or republish the
received messages to other MQTT topics (reserved or unreserved).
Figure 4 shows that each rule can be triggered by more than one
topic, and each topic can trigger more than one rule. Also, when a
rule is triggered, one or multiple actions can be executed.

When rules forward the published messages to another AWS
service, such as AWS Lambda, the authorization to access the other
service and the actions of other service can be controlled via AWS
identity and access management (IAM) role. Each IAM role is at-
tached with at least one policy that grants permissions to access
resources specified in the action of the rule or to control actions
toward the received data. For example, when an Amazon SNS rule
is created, an IAM role will be attached to that SNS rule to authorize
access to SNS resources. The attached role will have policies that
allow actions (e.g. sns:Publish) toward specific resources in Amazon
SNS. Similarly, when a lambda rule is created, an IAM role will be at-
tached to the lambda function. This attached IAM role will have poli-
cies that authorize actions (e.g. iot:Publish, iot:GetThingShadow)
toward specific resources in AWS Lambda. Thus, we can see that
IAM role and its attached policies are a part of the AWS IoT rule
definition to control actions. Figure 4 shows that each action of a
rule can only attach one IAM role, but each IAM role can be used
by many rule actions. Also, one IAM role can attach many policies,
and one policy can be attached to many IAM roles.

4 ISSUES IN ENFORCING ACO-IOT-ACMSVO
WITHIN AWS-IOT-ACMVO

AWS IoT does not support direct communication among VOs, be-
cause a VO is only allowed to communicate directly with its re-
served topics. The AWS-IoT-ACMVO model is one way to effect
VOs communication via rules within AWS IoT. AWS-IoT-ACMVO
keeps the transient data within the virtual object layer without
persistent storage, while only data about actual speeding cars is
propagated to the higher layers. Thus, the privacy of data can be
preserved. All components of VOs communication that contribute
in this communication are shown in Figure 4. Figure 5 show how

Access Control and Authentication

Cloud S
Service Services V\
Layer
.""" Virtual :‘I)Q;I:I; IAM
Objects P! Rolel
AWS oT Policy Vol
vol Topics
Virtual H
Object :
Layer . -
Cerfjficates VON VON
Topics|
CertsL|wn = [CertsN
/
Object Devicel b s und DeviceN
Layer

Figure 6: The Sensing Speeding Cars Use Case within AWS-
IoT-ACMVO

the rules engine of AWS IoT serves as a communication channel be-
tween VOs in the AWS-IoT-ACMVO model. The ACO-IoT-ACMsVO
academic model assumes the communication regime shown in Fig-
ure 2 where the communication channel between two VOs is a
shared topic to which VO1 publishes and VO2 subscribes. The rules
engine enables a similar effect to be achieved in AWS IoT as shown
in Figure 5.

The control points to authorize VOs communication via topics in
ACO-IoT-ACMsVO is placed on both VO side and topic (T) side [3].
For example, in case of ACL-Cap operational model, a VO can have
a right to publish to a topic only if the topic in the capability list of
the VO and the VO is in the access control list of T. In case of the
ABAC operational model, a publish permission will be authorized
if the topic is within VO-Publish attribute values and the VO is
within T-Publish attribute values. The subscription right is similarly
authorized on both sides.

In case of AWS-IoT-ACMVO, the control point to authorize re-
served topics of a VO to communicate with other reserved topics
of another VO is placed in rules engine. For example, when a data
arrived to a reserved topic of a VO, a lambda rule will trigger a
lambda function as an action if the Select Clause and Where Clause
in the SQL statement of the lambda rule evaluate to true. When the
lambda function is triggered, an attached IAM role with lambda
function will comply with a coupled policy or policies to autho-
rize AWS-IoT to access to the lambda function and authorize the
lambda function to execute actions with the received data. IAM role
policy could authorize lambda function to forward data to other
reserved/unreserved topics. Thus, other topics will receive data
as long as it is in an appropriate format without checking where
the data came from or rejecting the received data, and as a result,
the received data will be forwarded to subscribers. So, a question
like “which resources should a topic receives data from?” is only
controlled via IAM role that is attached within an action of a rule,
and topics has no control over what they receive.

179

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

We investigated applying the use case of sensing speeding cars,
which is employed in ACO-IoT-ACMsVO, within AWS-IoT-ACMVO.
But as we discussed above, the communication style, access control
points, access control models are not precisely alike. Although,
AWSnIoT does not support direct VOs communication, we were able
to develop AWS-IoT-ACMVO that allows effect VOs communication.
So, the use case of sensing speeding cars within ACO architecture
in Figure 3 can be applied and enforced within AWS IoT as shown
in Figure 6. The details of configuration, scenario, and authorization
policy are discussed in the following section.

5 A USE CASE: THE SENSING SPEEDING
CARS WITHIN AWS-IOT-ACMVO

In this section, we present two scenarios of the use case of sensing
cars speed. The two scenarios will have number of sensors and
a camera in the physical layer. All devices on the physical layer
will push collected data to their virtual objects (shadows). In our
scenarios, we focus on the communication among virtual objects
and how this communication can be controlled.

5.1 Sensing the Speed of One Car

We will discuss the configuration and the scenario of our simple
use case as follow.

5.1.1 Setup and Configuration. In this simple scenario, we will
have two physical sensors and one physical camera each with one
virtual object connected to it. Figure 7 shows the connected devices,
virtual objects (shadows), certificates, AWS IoT policy, rules, actions
and their IAM roles, and AWS services.

First, we create one virtual object for each physical object using
AWS IoT management console and attach one X.509 certificate for
each virtual object. For each one certificate, we attached an AWS
IoT policy. Certificates are copied into their corresponding physical
objects to allow authentication and authorization of physical objects
when they communicate with the corresponding virtual objects. In
other words, the attached AWS IoT policy authorizes specific actions
(connect and publish) for physical objects. When certificates are
given to the corresponding physical objects, they are accompanied
by the private key of the certificate and an AWS root CA certificate.

We simulated sensors and camera physical objects using AWS
SDK for JavaScript (Node.js). There is an attached rule for each
MQTT update topic $aws/things/Sensor;/shadow/update that trig-
gers a Lambda function. Lambda functions are responsible about
republishing the coming reported data that arrived to a virtual
object (Virtual Sensor; or Virtual Camera) from its correspond-
ing physical object (Sensor; or Camera) to the next virtual object
(Virtual Sensor(;,1) or Virtual Camera) as shown in Figure 7. Also,
each Lambda function is attached with IAM role that authorizes
AWS IoT to access AWS and AWS IoT resources and services. The
IAM role also controls Lambda function operations, such as re-
publishing data to another topic or getting the current state of a
shadow.

5.1.2 Senario. Sensor; sends RFID and Speed of the over speed-
ing car as a reported message to Virtual Sensor; (VS1) by publish-

ing to Sensor; MQTT update topic $aws/things/Sensor; [shadow/update.

Rule; that is attached with the Sensor; MQTT update topic will

Access Control and Authentication

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

—
)

Cloud
DynamoDB Service
\ Layer
Virtual Objects (Shadows)] IMQTT Topics Rules Engine
VC1
{"desired": {
"RFID": "545464", Cl/Update Lambda3
"Speed": {89, 99}}
S$2-P - "reported": {
’@ 2P eported: L o >
AWS IaT Pollcy "Pic": "57.jpg"}}
Vs2]
{"desired™: { < -Gaupdar\H >
":FID"d: "584!.;5}4}64", % Virtual
"Speed": , Object
"reported": { Role2-P Layer
"RFID": "545464",
Speed": 99}} Rolel.P
Vvs1|
¢ Certiflicates, L { "reported": { T
“RFID": "545464", [« S1/Update »(Rulel Lambdal ole
S1-Ce S2-Ce Cl-Cer "Speed": 89} }
|
Object
° L] >
~ > S~ Layer

Figure 7: A Simple Use Case of Sensing the Speed of One Car

trigger Lambdaj function every time data arrived to MQTT update
topic of VS1. Lambda; function republishes the arrived data to
Virtual Sensory (VS2) with a desired tag. Figure 7 shows that the
reported RFID and Speed to VS1 is republished to VS2 as desired
state by Lambda; function.

Sensor; also sends RFID and Speed of the over speeding car as
a reported message to VS2 by publishing to the following MQTT
update topic: $aws/things/Sensory/shadow/update. Rule; is going
to trigger Lambday function every time data arrived to MQTT
update topic of VS2. Lambday function check if the coming data
is with reported tag, it compares the saved desired RFID with the
coming reported RFID from Sensory. If the two RFIDs are matched,
Lambday function combines the two speeds and one RFID and
publish it with a desired tag to the Virtual Camera (VC1). Figure 7
shows that the reported RFID matches the desired RFID in Virtual
Sensory. Thus, VC1 will receive from Lambday function two speeds
that are reported from Sensor; and Sensor; for the same RFID.

Camera also sends RFIDs and pictures (Pic) of the passed cars
as a reported message to Virtual Camera by publishing to MQTT
update topic $aws/things/Camera/shadow/update. Rules is going
to trigger Lambdas function every time data arrived to MQTT
update topic of VC1. Lambdas function check if the coming data
is with a reported tag, it compares the saved coming desired RFID
from Sensor, with the coming reported RFID from Camera. If the
two RFIDs are matched, Lambdas function combines the RFID,
Speeds, and Pic and store them to the Amazon DynamoDB. Figure 7
shows that the reported RFID matches the desired RFID in VC1.
Thus, the combined RFID, Speeds, and Pic will be stored in in the
Amazon DynamoDB.

180

{ "Version": "2012-10-17",
"Statement":
[
{ "Effect": "Allow",
"Action": ["iot:Connect"],
"Resource": ["arn:aws:iot:us-west-2:760000000000:
client/Sensor2"]

}
{ "Effect": "Allow",
"Action": ["iot:Publish"],
"Resource": ["arn:aws:iot:us-west-2:76000000000:
topic/$aws/things/Sensor2/shadow/update"]
}
]
}

Figure 8: S2-P that is Attached to S2-Cert

5.1.3 Authorization policy. There is an AWS IoT policy attached
with each certificate to authorize specific actions for physical ob-
jects. For example, Sensor; are only allowed to connect and publish
to V51 in order to send the collected RFID and Speed of the over
speed cars. Thus, the AWS IoT S1-P and V' S1 are attached with S1-
Cert which is copied to Sensor;. The policy states that connect and
publish actions are allowed to the specified resources, which is V51
(the shadow of Sensor). Similarly, the AWS IoT S2-P in Figure 8
and VS2 will be attached to S2-Cert, which is copied to Sensors,
and the AWS IoT C1-P and VC1 will be attached to C1-Cert, which
is copied to Cameray. AWS IoT defines policy variables, which can
be used in AWS IoT policies within the resource or condition block.
The basic variable IoT : ClientID can be used to generate a policy

Access Control and Authentication

{
"Version": "2012-10-17",
"Statement": [
{ "Effect": "Allow",
"Action": "iot:GetThingShadow",
"Resource": "arn:aws:iot:us-west-2:760000000000:
thing/Sensor2"

{ "Effect": "Allow",
"Action": "iot:Publish",
"Resource": "arn:aws:iot:us-west-2:760000000000:
topic/$aws/things/Camera/shadow/update"

Figure 9: Roley Policy that is Attached to Role;

that can be attached to all certificates. However, certificates is not
coupled with an ID of physical sensor that should connect and
publish to the attached shadows, so malicious sensor could change
their ID to connect and publish to any other MQTT update topic.
Therefore, we preferred to specify and hard-coded one different
policy for each certificate as shown in Figure 7, and each AWS IoT
policy is similar to S2-P shown in Figure 8 but with different sensor
names.

Also, There is an IAM role attached to each Lambda function to
authorize it accessing to AWS services and AWS IoT resources. For
example, Role; is attached to Lambda; to authorize it publishing
to the update topic of VS2. Also, Role; is attached to Lambday
to authorize it getting the desired state of VS2 and publishing to
the MQTT update topic of VC1. Figure 9 shows the IAM Role;
Policy that is attached to Roley. Also, Roles is attached to Lambdas
to authorize it getting the desired state of VC1 and publishing to
Amazon DynamoDB.

5.2 Sensing the Speed of Multiple Cars

The previous simple use case introduces the basic idea of implement-
ing and controlling the virtual object communication within AWS
IoT. However, in realty there is a need to track multiple cars, where
different cars pass a sensor at a time. A VO (shadow) in AWS IoT
has different reserved topics that are used by the VO to subscribe
to them. So, any time a sensor publish a new list of RFIDs/Speeds,
the old list is deleted and a new one is saved. However, our use case
with multiple cars needs to keep track of the historical data (old
and new RFIDs).

In this use case, for every VO corresponding to a physical object,
we propose to have another relative VO that works as storage of his-
torical data. The only way to push or get data from the VO storage
is by using a lambda function that is triggered by publishing data
from a sensor to the MQTT update topic of the corresponding VO.
Figure 10 shows sensors (S1, S2, ..., Sn, C1) and their corresponding
virtual objects (VS1,VS2,...,VSn, VC1) and the storage for each of
them (VS1S,VS2S, ..., VSnS, VC1S).

5.2.1 Setup and Configuration. As pervious simple use case,
we create one virtual object and one virtual object storage for
our physical objects and attached one X.509 certificate for each

181

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

virtual object. Certificates that are attached with AWS IoT policies
are copied into their corresponding physical objects. The AWS
IoT policy states that sensors and the Camera are only allowed
to connect and publish to the corresponding VO (similar to the
mentioned policy in Figure 8).

We simulated Sensors and the Camera using AWS SDK for
JavaScript (Node.js). Lambda functions are triggered by rules that
are attached with MQTT update topics of VOs. For example, Lambda;
is triggered by rulel that is attached to MQTT update topic of VS1.
In general, Lambda functions are responsible about the complex
computations, such as getting the stored data, comparing and con-
solidating the coming and the stored data, and republishing data to
the current storage or next VO. Figure 10 describes the functionality
of each lambda function.

5.2.2 Senario. Sensor; sends alist of RFIDs/Speeds of over speed-
ing cars as a reported message to VS1 by publishing to VS1 MQTT
update topic. Rule; triggers Lambda; function when a published
request arrived to MQTT update topic. Lambda; function will con-
sider the reported RFIDs/Speeds as a suspicious list, that will be
handled as described in Figure 10.

Sensory, ..., Sensor;, .., Sensor, also send a list of RFIDs/Speeds
of over speeding cars as a reported message to their corresponding
VO by publishing to VO; MQTT update topic, where 2 < i < n.
The reported RFIDs/Speeds from physical objects is considered
as a suspicious list (stored in VSiS under reported tag) beside the
suspicious list that is coming from a previous VO (stored in VSiS
under desired tag with RFID1). The matched RFIDs in both of the
suspicious lists will be stored as SavePic list (stored in VSiS under
desired tag with RFID2). Rule; triggers Lambda; function when a
published request arrived to MQTT update topic of V'S;. Lambda;
function will deal with the arrived data as suspicious lists and
handle it to generate the SavePic list as descried in Figure 10. Note
that Lambdas to Lambda,,_;y will do the same computations.

Camera sends RFIDs and pictures (Pic) of the passed cars as a
reported message to Virtual Camera (VC1) by publishing to MQTT
update topic of VC1. Rule(p,1q) triggers Lambda ;1) function when
apublished request arrived to VC1 MQTT update topic. Lambda,, 1)
function will deal with the coming data as descried in Figure 10.

5.2.3 Authorization policy. As pervious simple use case, we will
have an AWS IoT Policy that is attached with S1-Cert, .., Sn-Cert,
C1-Cert. The policy state that physical objects can only connect
to their corresponding VO and publish to MQTT update topic of
the VO. Figure 8 is an example of an attached AWS IoT policy that
authorizes physical objects to connect and publish.

Also, The IAM roles are attached to Lambda functions. For ex-
ample, Role; is attached to Lambda; to authorize it publishing to
the update topic of VS2. Role; is attached to Lambday to autho-
rize it getting the data of the storage of VS2 and publishing only
to the update topic of the V'S2S and V3. Role(;,11) is attached to
Lambday, 1) to authorize it getting the data of the storage of VC1
and publishing only to its storage and then to the Amazon Dy-
namoDB. Figure 11 shows the Roles Policy of the IAM Role; that is
attached to Lambdas to authorize it getting the data that is saved
in the storage of V'S5 (n = 5 in our implementation) and publishing
only to the update topic of the V'S5S and to the update topic of VC1.

Access Control

and Authentication

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

Cloud
Service layer

DynamoDB

If Reported:

1- Publish suspicious
list to the next sensor
with a desired tag and
RFID1/Speedl.

2]

If Desired with RFID1:

1- Combine current (in the VS2S) and
comming suspicious lists

2- Publish the combined suspicious list to
current storage (VS2S) and the next sensor
with a desired tag and RFID1/Speed1.

If Reported:
1- Compare current and comming suspicious
lists, and if there are similar RFIDs:
A- Generate a SavePic list with the similar|
RFIDs, and puplish it to the next sensor
with a desired tag and RFID2/Speed2.
B- Restore current suspicious list without
the similar RFIDs
2- Publish the reported suspicious list without
the similar RFIDs to the next sensor with a

desired tag and RFID1/Speed1.

Ai (where2 <i<n)

If Desired with RFID1:

1- Combine current (in the VSiS) and
comming suspicious lists.

2- Publish the combined suspicious list to
current storage (VSiS) and the next sensor
with a desired tag and RFID1/Speed1.

If Desired with RFID2:

1- Publish the SavePic list to next sensor

2- Delete current suspicious RFIDs/Speeds
that are in the SavePic list.

If Reported:
1- Compare current and comming suspicious
lists, and if there are similar RFIDs:
A- Generate a SavePic list with the similar
RFIDs, and puplish it to the next sensor
with a desired tag and RFID2/Speed2.
B- Restore current suspicious list without
the similar RFIDs
2- Publish the reported suspicious list without
the similar RFIDs to the next sensor with
a desired tag and RFID1/Speed1.

©

o]

If Desired with RFID1:

1- Combine current (in the VSnS) and
comming suspicious lists

2- Publish the combined suspicious list
to current storage (VSnS).

If Desired with RFID2:

1- Publish the SavePic list to next sensor

2- Delete current suspicious RFIDs/Speeds
that are in the SavePic list.

If Reported:
1- Compare current and comming suspicious
lists, and if there are similar RFIDs:
A- Generate a SavePic list with the similar
RFIDs, and puplish it to the next sensor
with a desired tag and RFID2/Speed2.
B- Restore current suspicious list without
the similar RFIDs
2- Publish the reported suspicious list without
the similar RFIDs to the next sensor with

Sn-1/Uf—» @ I

a desired tag and RFID1/Speed1.

If Desired with RFID2:
1- Combine the curent SavePic ¥jst
and the comming SavePic list
2- Publish the Combined SavePic
list to current sotrage (VC1S)

If Reported:
1- Compare the current SavePic list
and the comming suspicious list, and
if there are similar RFIDs:
A- Consolidate the two lists, and
publish it to the Amazon DynamoDB
B- Remove the similar RFIDs/Speeds
that are saved in the current SavePjc
list.

P red Pub Pub
esire i i
Desired | |« U _,@ ﬂed_’ cu
Virtual
Object layer
Pub Pub Pub Pub Pub Pub
Reported Reported Reported Reported Reported Reported
-
T ~’,
& < & & <
s1 52 s3 sn-1 sn a
G o B oa ™ o A s n
) o™o 0™0
&\ oo 00 &\ @& '@& 00 @0‘ Object layer

Figure 10: A Use Case of Sensing the Speed of Multiple Cars

{"Version": "2012-10-17",
"Statement": [

{ "Effect": "Allow",
"Action": "iot:GetThingShadow",

thing/Sensor5_Storage"

{ "Effect": "Allow",
"Action": "iot:Publish",

{ : "Allow",
"iot:Publish",
"Resource": "arn:aws:iot:us-west-2:760000000000:
topic/$aws/things/Sensor5_Storage/shadow/update”
}

"Resource": "arn:aws:iot:us-west-2:769000000000:

"Resource": "arn:aws:iot:us-west-2:769000000000:
topic/$aws/things/Camera/shadow/update"}

Figure 11: Roles that is attached to Lambdas

182

6 PERFORMANCE

Our scenario propagates the Suspicious list published by any sen-
sor until the last virtual sensor, and it propagates the SavePic list
from the moment of generation until the camera. The first possible
generated Suspicious list starts from Sensory, and the first possible
SavePic list starts when Sensorz publishes similar Suspicious list
to the published Suspicious list by Sensor, so the SavePic list will
be generated by lambday function that is triggered when Sensor
publishes to its virtual object. In this section, we calculate the time
of propagating the Suspicious and the SavePic list to their final

destination.

The use case with multiple sensors and cars is employed in
computing the propagation time. we set the number of sensors to
five. We used two AWS SDKs for JavaScript (Node.js) to subscribe
to Virtual Sensors Storage (VS5S) and Virtual Cameray Storage

Access Control and Authentication

(VC1S), so we can get an acknowledgement whenever the Suspi-
cious and the SavePic list are reached. A bash script is written to
run Sensory, start the timer, run VS5S, and end the timer whenever
we get an acknowledgement from VS5S. Similarly, the bash script
will run Sensory (with smillar RFIDs of Sensory), start the timer, run
VC1S, and end the timer whenever we get an acknowledgement
from VC1S. Thus, we were able to calculate the propagation time
of the Suspicious and the SavePic list to their final destination.

We run Sensor; that publish the Suspicious list with {1, 10, 20, 30, 40}

RFIDS. For the Suspicious list with one RFID, we calculate the prop-
agation average time of 10 times run. Thus, the propagation time of
the Suspicious list with one RFID from S until VS5S in Figure 12,
which is 5915 millisecond, is the average of 10 times run. Similarly,
the propagation time of the Suspicious list with 10, 20, 30, 40 RFIDs
from S; until VS5S, which is 6335, 7131, 7519, and 8109 millisec-
ond, is also the average of 10 times run. However, we get rid off
outliers, which is the time values that exceed 10000 or less than
3000 millisecond.

8500

8000

7500

7000

6500

Time in Milliseconds

6000

‘+Suspicious List From VS1-VS5S

5500
0

10 20

RFIDs Number

30 40

Figure 12: Propagation Time of Suspicious List from S; until
VS5S

After a Suspicious list is published by S; and an acknowledge-
ment is received from VS5S, Sensor is also run to publish a Suspi-
cious list, similar to the Suspicious list that is published by S1, with
{1, 10, 20, 30,40} RFIDS. The propagation time of the SavePic list
with {1, 10, 20, 30, 40} RFID from S until VC1S in Figure 13, which
is 7774, 8100 , 8405, 8694 , 8851 millisecond, is the average of 10
times run. However, we get rid off outliers, which is the time values
that exceed 14000 or less than 4000 millisecond.

The algorithms of our Lambda functions that we used within
our use case in Figure 10 shows more computation and steps when
a Lambda function gets the Suspicious list than when a Lambda
function gets the SavePic list. However, our results in Figure 12
and 13 show that the propagation time of the Suspicious lists are
less than the propagation time of the SavePic lists. This different
is because of the larger payload of the SavePic list, which has two

183

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

9000

8800

[o]
(1]
o
o

8400

8200

Time in Milliseconds

o
o
o
o

7800

—¥— SavePic List From S2-VC1S

7600 : : :
0 10 20 30

RFIDs Number

40

Figure 13: Propagation Time of SavePic List from S; until
VCi1Ss

speeds for each one RFID, than the Suspicious list, which has only
one speed for each RFID.

7 DISCUSSION

AWS IoT does not have full capability to implement our use case that
we employed in [3]. First, virtual objects (shadows) in AWS IoT can
not communicate directly to each other. Since virtual objects can
only subscribe to their reserved topics update, get, and delete. So,
they receive data through their reserved topics. Also, virtual objects
can publish to their reserved topics only whenever they receive
data. As a result, publishing and subscribing of virtual objects is
only to their reserved topics and direct publishing to unreserved
topics or irrelevant topics is not applicable.

There are several indirect ways to allow virtual objects com-
munication in AWS IoT. One way to allow two virtual objects to
communication is to attach a rule with the update topic of first
virtual object that triggers a republish action to the second virtual
object update topic. The Republish ction can be also used to for-
ward data to AWS services as shown in Figure 14. Another way is to
attach a rule with a topic of first virtual object that trigger a lambda
function, which can do complex computation, such as publishing
data, getting data, and comparing data. Thus, lambda function can
republish the received data to another topic, which could be the
update topic of the second virtual object. We employed the second
way in our use cases.

In addition to indirect communication among virtual objects,
virtual objects in AWS IoT cannot keep track of old data. For ex-
ample, if a new suspicious list is published to a virtual object, the
current suspicious list will be deleted and the new one will be saved.
However, our use case needs to combine the coming suspicious list
from previous sensor and the current saved one. Since the process
of deleting and saving list is very fast, triggering a lambda function
that get the current suspicious list from virtual object and then

Access Control and Authentication

combine it with the coming one did not work. Thus, virtual objects
in AWS IoT can not save old data.

There are several ways to keep track historical data in AWS IoT.
One way to keep track historical data of a virtual object is to have
another relative virtual object that works as storage. The only way
to get or publish data to the relative virtual object is by allowing
one lambda function to publish and get data from it. This lambda
function is triggered whenever data is published to update topic
of the virtual object. Thus, the coming suspicious list arrived to
the update topic of a virtual and the current suspicious list that is
saved in the virtual object can be combined and republished by the
lambda function. We used this way in our use case to keep transit
data within the virtual object layer, so the privacy of data can be
reserved. Another way to reach the historical data of a virtual object
is to trigger a republish action to AWS DynamoDB whenever data
is published to update topic of the virtual object. Thus, authorized
virtual objects can get the historical data from AWS DynamoDB as
needed. However, our use case tends to keep the suspicious lists
within the virtual object until at least two sensors report the speed
of a car to be over limit. Figure 14 shows the way of republishing
suspicious lists, which come from S; and Sy, to AWS DynamoDB
in the cloud service layer. Then, lambda; is authorized to get all
suspicious lists and check if there are duplicated RFIDs within the
saved suspicious lists and also within the suspicious list coming
from the camera. If so, this RFID is declared to be an over-limit
car, and it is reported along with consolidate information from all
suspicious lists (speed, picture).

Another issue with the AWS IoT is that virtual objects cannot do
complex computation on the data they receive. They only save the
recent published desired or reported data. Such a computation in
our use case can not be implemented within only AWS IoT. Thus,
since we need the transit data to be only within AWS IoT, we used
AWS Lambda service to support doing the needed computation.
Another way to do that is to send data to DynamoDB and allow an
application or a third party to do the needed computation.

Moreover, in our use case, we could have up to n sensors. Lambdas
to Lambda,,_1 functions are repetitive functions that can be trig-
gered by the update topic of VS3 to VS(,_;). We can get rid of
this repetition If we have only one Lambda that accept passing the
name of the published sensor. However, triggering same lambda is
not working within our use case, because to our knowledge there
is no way to pass the name of the published sensor to a lambda
function. Thus, repeated copies of Lambday,,_1) will be increased
by increasing the number of sensors, which is n.

8 CONCLUSION

In this paper, we studied AWS IoT and developed the access control
model for virtual objects (shadows) communication in AWS IoT
(AWS-IoT-ACMVO). We used the AWS-IoT-ACMVO to implement
two scenarios of the use case that is employed in ACO-IoT-ACMsVO:
the simple use case of sensing the speed of one car with two sen-
sors and the use case of sensing the speed of multiple cars with
multiple sensors. By implementing these two scenarios using ACO-
IoT-ACMsVO, we determined how to configure the policies and
control virtual object communication of our proposed model. The
time to propagate information about suspicious cars and over-limit

184

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

Cloud
Service DynamoDB
Layer h
VOs MQTT Topics Rules Engine | \ \ \
ver |[eH-(Crupdate)
Virtual
Object | [Y52
Layer
VSl
Object
Layer

Figure 14: A Different Way of VOs Communication and Data
Computation

cars through all virtual objects is measured and discussed. Finally,
upon our study and implementation, we offered a discussion of
AWS I0T issues and suggestions of enhancing VOs communication
and their access control.

ACKNOWLEDGMENT

This research is partially supported by NSF CREST Grant HRD-
1736209, NSF Grants CNS-1111925, CNS-1423481, CNS-1538418,
and DoD ARL Grant W911NF-15-1-0518.

REFERENCES

[1] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. 2015. Internet of things: A survey on enabling technologies,
protocols, and applications. IEEE Comm. Surveys & Tutorials 17, 4 (2015), 2347-
2376.

Asma Alshehri and Ravi Sandhu. 2016. Access Control Models for Cloud-Enabled
Internet of Things: A Proposed Architecture and Research Agenda. In the 2nd
IEEE International Conference on Collaboration and Internet Computing (CIC).
IEEE, 530-538.

Asma Alshehri and Ravi Sandhu. 2017. Access Control Models for Virtual Object
Communication in Cloud-Enabled IoT. In The 18th International Conference on
Information Reuse and Integration (IRI). IEEE.

[4] Jean Bacon, David M Eyers, Jatinder Singh, and Peter R Pietzuch. 2008. Access
control in publish/subscribe systems. In the Second International Conference on
Distributed Event-Based Systems. ACM, 23-34.

Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. 2017. Access Control Model for
AWS Internet of Things. In International Conference on Network and System
Security. Springer, 721-736.

Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé. 2014. On
the integration of cloud computing and internet of things. In IEEE Int. Conf. on
Future Internet of Things and Cloud (FiCloud). 23-30.

Li Da Xu, Wu He, and Shancang Li. 2014. Internet of things in industries: A
survey. IEEE Trans. on Indust. Informatics 10, 4 (2014), 2233-2243.

Patrick Th Eugster and et all. 2003. The many faces of publish/subscribe. ACM
computing surveys (CSUR) 35, 2 (2003), 114-131.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and

=

[3

[5

Access Control and Authentication

[10]

[11

[12]

[13]

=
it

[15]

future directions. Future Generation Computer Systems 29, 7 (2013), 1645-1660.
Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid Khan. 2012.
Future internet: the internet of things architecture, possible applications and key
challenges. In 10th IEEE Int. Conf. on Frontiers of IT. 257-260.

Michele Nitti, Virginia Pilloni, Giuseppe Colistra, and Luigi Atzori. 2015. The
Virtual Object as a Major Element of the Internet of Things: a Survey. IEEE
Communications Surveys & Tutorials 18, 2 (2015), 1228-1240.

Pritee Parwekar. 2011. From internet of things towards cloud of things. In 2nd
IEEE Int. Conf. on Comp. and Comm. Tech. 329-333.

BB Prahlada Rao, Paval Saluia, Neetu Sharma, Ankit Mittal, and Shivay Veer
Sharma. 2012. Cloud computing for Internet of Things and sensing based appli-
cations. In Sixth IEEE Int. Conference on Sensing Technology (ICST). 374-380.
Rodrigo Roman, Jianying Zhou, and Javier Lopez. 2013. On the features and
challenges of security and privacy in distributed internet of things. Computer
Networks 57, 10 (2013), 2266-2279.

Yun Zhang, Farhan Patwa, and Ravi Sandhu. 2015. Community-based secure
information and resource sharing in AWS public cloud. In 2015 IEEE International
Conference on Collaboration and Internet Computing (CIC). IEEE, 46-53.

185

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

	Abstract
	1 Introduction
	2 Background
	2.1 ACO Architecture
	2.2 Access Control Models for VO Communication in Cloud-Enabled IoT
	2.3 The General Access Control Model for AWS-IoT (AWS-IoTAC)

	3 The AWS-IoT-ACMVO Model for AWS IoT Shadows Communication
	4 Issues in enforcing ACO-IoT-ACMsVO within AWS-IoT-ACMVO
	5 A Use Case: The Sensing Speeding Cars within AWS-IoT-ACMVO
	5.1 Sensing the Speed of One Car
	5.2 Sensing the Speed of Multiple Cars

	6 Performance
	7 Discussion
	8 Conclusion
	References

